The world of small noncoding RNAs (sncRNAs) is ever-expanding, from small interfering RNA, microRNA and Piwi-interacting RNA to the recently emerging non-canonical sncRNAs derived from longer structured RNAs (for example, transfer, ribosomal, Y, small nucleolar, small nuclear and vault RNAs), showing distinct biogenesis and functional principles. Here we discuss recent tools for sncRNA identification, caveats in sncRNA expression analysis and emerging methods for direct sequencing of sncRNAs and systematic mapping of RNA modifications that are integral to their function.
Nat Cell Biol
PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications
Junchao Shi*, Yunfang Zhang*, Dongmei Tan*, Xudong Zhang*, Menghong Yan*, Ying Zhang*, Reuben Franklin*, Marta Shahbazi, Kirsty Mackinlay, Shichao Liu, Bernhard Kuhle, Emma R James, Liwen Zhang, Yongcun Qu, Qiwei Zhai, Wenxin Zhao, Linlin Zhao, Changcheng Zhou, Weifeng Gu, Jernej Murn, Jingtao Guo, Douglas T Carrell, Yinsheng Wang, Xuemei Chen, Bradley R Cairns, Xiang-lei Yang, Paul Schimmel, Magdalena Zernicka-Goetz, Sihem Cheloufi#, Ying Zhang#, Tong Zhou#, and Qi Chen#
Although high-throughput RNA sequencing (RNA-seq) has greatly advanced small non-coding RNA (sncRNA) discovery, the currently widely used complementary DNA library construction protocol generates biased sequencing results. This is partially due to RNA modifications that interfere with adapter ligation and reverse transcription processes, which prevent the detection of sncRNAs bearing these modifications. Here, we present PANDORA-seq (panoramic RNA display by overcoming RNA modification aborted sequencing), employing a combinatorial enzymatic treatment to remove key RNA modifications that block adapter ligation and reverse transcription. PANDORA-seq identified abundant modified sncRNAs-mostly transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs)-that were previously undetected, exhibiting tissue-specific expression across mouse brain, liver, spleen and sperm, as well as cell-specific expression across embryonic stem cells (ESCs) and HeLa cells. Using PANDORA-seq, we revealed unprecedented landscapes of microRNA, tsRNA and rsRNA dynamics during the generation of induced pluripotent stem cells. Importantly, tsRNAs and rsRNAs that are downregulated during somatic cell reprogramming impact cellular translation in ESCs, suggesting a role in lineage differentiation.