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Polycystic ovary syndrome (PCOS) is the most prevalent ovulatory and endocrine disorder affecting reproductive-aged women, yet the 
absence of a specific, rapid molecular diagnostic marker results in diagnostic delays and inaccuracies. Given the critical role of RNA 
modifications in disease pathology, this study utilized a high-throughput RNA modification profiling platform to investigate 15 types of 
peripheral blood RNA modification patterns in individuals with ovulatory disorders, including PCOS and primary ovarian insufficiency 
(POI), and control subjects. Our results revealed that distinct modification profiles correspond to specific disease states, with significant 
shifts in RNA modification inter-correlations observed across conditions. Additionally, specific RNA modifications were associated with 
clinical features, such as serum levels of testosterone and the follicle number per ovary (FNPO). To optimize diagnostic precision, we 
evaluated various machine learning models, identifying that combining m 6A and m 7G modifications in a light gradient boosting machine 
model (LightGBM) achieves the highest accuracy in distinguishing PCOS, outperforming traditional diagnostic markers. This highlights the 
potential of RNA modification profiling as a novel, high-accuracy diagnostic tool for PCOS in clinical settings. 
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INTRODUCTION  

Ovulatory disorders account for over 25% of female infertility 
cases in clinical settings (Carson and Kallen, 2021), with 
polycystic ovary syndrome (PCOS) affecting 5% to 20% of 
reproductive-aged women (Azziz et al., 2016), followed by 
primary ovarian insufficiency (POI), which affects 1% to 3.7% 
of this population (Stuenkel and Gompel, 2023). PCOS is 
clinically characterized by irregular menstrual cycles, polycystic 
ovaries visible on ultrasound, and biochemical signs of excess 
androgens (Rosenfield and Ehrmann, 2016). Additionally, many 
PCOS patients present with obesity and are at increased risk of 
metabolic disorders and cardiovascular diseases (Wild, 2002), 
emphasizing the importance of early and accurate identification 
in clinical practice. 

The formal diagnostic criteria for PCOS were first proposed in 
the early 1990s and have been updated over the past 30 years, 
most notably with the introduction of the Rotterdam Criteria 
(Teede et al., 2023). Despite these updates, the lack of a specific 
diagnostic test for PCOS continues to pose significant challenges 

in its diagnosis and management. One of the primary challenges 
in current PCOS diagnostics is the assessment of ovarian antral 
follicle count, which relies on traditional ultrasound imaging. 
This method is highly operator-dependent, and variations in 
operator expertise (Sonigo et al., 2018), as well as differences in 
ultrasound equipment and techniques, can lead to inconsistent 
follicle counts (Sonigo et al., 2018), complicating the diagnosis of 
PCOS in clinical settings. Moreover, as a chronic condition, PCOS 
presents heterogeneous clinical features, and symptom severity 
can vary across an individual’s lifespan. Some women may 
exhibit minimal or no overt symptoms. Tracking and monitoring 
clinical symptoms over time is also necessary for PCOS diagnosis. 
However, the high variability introduced by subjective factors in 
the diagnostic process further complicates accurate diagnosis 
(Escobar-Morreale, 2018). These challenges often result in 
delayed or misdiagnosed PCOS cases in clinical practice (Agapova 
et al., 2014). Given these issues, there is an urgent need to 
identify molecular characteristics and specific biomarkers for 
PCOS. Such advancements would not only enhance diagnostic 
precision but also facilitate the discovery of potential therapeutic 
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targets. 
Over the past few decades, peripheral blood biomarkers have 

garnered increasing attention due to their sensitivity, specificity, 
and convenience. As diseases progress, circulating cells and 
secreted cellular materials undergo dynamic changes, carrying a 
wealth of genetic and non-genetic information (Natalia et al., 
2023). Consequently, various blood biomarkers, such as extra-
cellular vesicles (Thompson et al., 2016), proteins (Borrebaeck, 
2017), and nucleic acids (Schwarzenbach et al., 2011), have 
been extensively studied for their potential in disease detection 
and prediction. Among these, RNA modifications have recently 
emerged as a promising area of research. 

To date, more than 170 types of RNA modifications have been 
identified across the biosphere. With advancements in detection 
technologies, even RNA modifications on less abundant RNAs 
are now being detected and characterized, significantly advan-
cing our understanding of this complex field. Initially considered 
only structural features of RNA, these modifications have since 
gained attention for their critical roles in regulating RNA 
function and their involvement in human diseases (Barbieri 
and Kouzarides, 2020; Delaunay et al., 2024; Sullenger and 
Gilboa, 2002). RNA modifications have been shown to change 
sensitively and function in response to disease in both local 
tissues and the peripheral circulation. For example, blood levels 
of N 6-methyladenosine (m 6A) were significantly altered follow-
ing radiation therapy (Chen et al., 2023) and were found to be 
elevated in the peripheral blood of breast cancer patients 
compared with those with benign breast conditions (Xiao et al., 
2021). Several studies have demonstrated that m 6A modification 
is critical for hematopoietic stem cell regeneration (Wang et al., 
2018; Zhang et al., 2017) and function (Yin et al., 2022), further 
emphasizing the importance of RNA modification in the 
circulatory system. These findings suggest that peripheral RNA 
modifications hold significant potential for disease diagnosis and 
treatment. Previously, we developed a high-throughput RNA 
modification profiling platform based on LC-MS/MS (Chen et al., 

2016; Zhang et al., 2022; Zhang et al., 2018), which allows for 
the detection and quantification of RNA modifications from low- 
input samples. 

In this study, we investigated RNA modification changes in the 
peripheral blood of individuals with ovarian diseases, including 
PCOS and POI, as well as control subjects. We identified distinct 
RNA modification signatures across these groups. Notably, we 
found that specific RNA modifications, such as m 6A and m 7G, 
could accurately distinguish PCOS cases from both POI patients 
and control subjects, with high sensitivity and specificity. 

RESULTS   

Differential expression and variability of RNA 
modifications in peripheral blood samples among PCOS, 
POI, and control groups  

The baseline characteristics of the PCOS, POI, and control groups 
are summarized in Table 1 and Table S1 with age distributions 
consistent across all groups. In alignment with prior studies, the 
PCOS group exhibited significantly higher serum testosterone (T) 
levels (P<0.01), an increased follicle number per ovary (FNPO) (P 
<0.001), and elevated serum anti-Müllerian hormone (AMH) 
levels (P<0.0001) compared with controls. In contrast, the POI 
group showed significantly higher serum follicle-stimulating 
hormone (FSH) levels (P<0.0001), lower AMH levels (P<0.001), 
and reduced FNPO (P<0.001). Peripheral blood RNAs were then 
digested into single nucleotides, and RNA modification profiling 
was performed using a single-blind, high-throughput LC-MS/MS 
approach. The overall strategy for identifying RNA modifications 
is depicted in Figure 1A. 

Across samples from PCOS, POI, and control subjects, we 
identified and quantified 15 types of modified nucleosides, 
including m 1A, m 6A, Am, I, Im, m 5U, Um, m 5C, Cm, m 1G, 
m 2G, m 7G, m 2,2G, m 2,2,7G, and Gm. Principal component 
analysis (PCA) (Figure 1B) revealed distinct RNA modification 

Table 1. Clinical characteristics among different groups in the discovery and validation cohorts a) 

Variables 
Discovery cohort  Validation cohort 

Control PCOS POI P value Control PCOS POI P value 

Subjects (n) 25 27 15   20 21 14   

Age (years) 
30.00 

[28.00–34.00] 
29.00 

[27.50–31.00] 
31.00 

[28.00–34.00] 
0.4044  

30.00 
[26.75–33.00] 

29.00 
[26.00–29.00] 

32.00 
[30.50–36.75] 

0.0185 

BMI (kg m −2) 
22.79 

[20.14–24.42] 
23.63 

[21.47–27.07] 
21.60 

[20.15–24.35] 
0.2928  

21.56 
[19.96–29.04] 

24.50 
[21.63–26.99] 

23.00 
[21.78–26.83] 

0.6897 

FSH (mIU mL −1) 
6.45 

[5.79–7.46] 
6.11 

[5.32–7.38] 
20.80 

[16.10–28.13] 
<0.001  

6.34 
[5.84–7.33] 

5.82 
[5.16–6.23] 

31.59 
[18.70–45.93] 

<0.001 

LH (mIU mL − 1) 
4.95 

[4.13–6.10] 
8.50 

[5.23–12.07] 
6.63 

[4.97–14.66] 
0.0045   

5.48 
[4.73–6.24] 

9.26 
[7.55–12.82] 

18.78 
[8.43–26.63] 

<0.001 

Testosterone (ng dL −1) 
20.62 

[15.41–24.59] 
30.83 

[19.20–46.49] 
13.04 

[10.24–28.92] 
0.0033   

15.38 
[12.82–20.01] 

45.70 
[40.85–55.75] 

22.42 
[10.98–28.18] 

<0.001 

E 2 (pg mL −1) 
32.30 

[25.60–42.30] 
36.40 

[27.75–44.35] 
23.21 

[17.30–33.70] 
0.5916   

34.25 
[23.93–42.5] 

39.60 
[34.70–58.30] 

28.35 
[5.68–129.30] 

0.0459  

P 4 (ng mL −1) 
0.14 

[0.09–0.19] 
0.15 

[0.09–0.29] 
0.28 

[0.16–0.39] 
0.1620   

0.15 
[0.11–0.20] 

0.14 
[0.12–0.24] 

0.17 
[0.05–0.39] 

0.1793  

AMH (ng mL −1) 
3.43 

[2.45–5.03] 
9.53 

[6.58–13.29] 
0.12 

[0.06–0.55] 
<0.001  

4.10 
[2.87–6.43] 

8.32 
[6.64–14.07] 

0.06 
[0.06–0.36] 

<0.001 

FNPO (n) 
7.00 

[6.00–9.00] 
12.00 

[11.50–14.00] 
1.00 

[0.50–2.75] 
<0.001  

8.25 
[5.88–9.13] 

13.50 
[11.50–14.50] 

0.75 
[0.00–2.00] 

<0.001 

a) Values were presented as median [interquartile range]. Statistical significance was determined by two-tailed one-way ANOVA test. BMI, body mass index; FSH, 
follicle-stimulating hormone; LH, luteinizing hormone; E 2, estradiol; P 4, progesterone.  
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patterns among the three groups, indicating significant altera-
tions in blood RNA modifications associated with disease. 
Notably, we observed that RNA modification expression levels 
became more variable with disease onset (Figure 1C and D), 
suggesting that the stability of RNA modifications is disrupted in 
PCOS and POI patients. Specific modifications, including m 7G, 
m 6A, Gm, m 1A, and m 2,2,7G, are significantly altered in relative 
abundance across groups (Figure 1E), with Cm, Um, and m 2,2G 
also showing differential expression between the PCOS and 
control groups (Figure S1). 

Intrinsic correlations of RNA modifications across ovarian 
diseases and controls  

We performed a pairwise correlation analysis of all RNA 
modifications across samples. Interestingly, we observed strong 
intrinsic associations among various types of RNA modifications. 

Guanine modifications (including m 2,2G, m 2G, m 1G, m 7G, and 
m 2,2,7G) exhibited robust positive correlations with each other, 
while modifications such as Am, Im, and I were negatively 
correlated with the guanine modifications. These intrinsic 
associations were consistently observed across PCOS, POI, and 
control samples (Figure 2A). Notably, RNA modifications in 
PCOS patients displayed a higher number of significant positive 
correlations compared with POI and control cases, while the POI 
group demonstrated an increased number of negative correlation 
pairs relative to the other groups (Figure 2A). 

Furthermore, correlation patterns for specific modifications 
varied distinctly across the PCOS, POI, and control groups (Figure 
2B; Figure S2). For instance, some correlations were stable across 
groups—for example, m 2G and m 2,2G maintained strong positive 
correlations with comparable coefficients across all groups. 
However, other correlations differed markedly: m 7G and m 2,2G, 
while positively correlated in all groups, showed lower correla-

Figure 1. Comprehensive analysis of RNA modification profiles in peripheral blood from control, PCOS, and POI patients. A, Schematic overview of the experimental workflow 
for identifying RNA modifications. B, PCA of RNA modification abundance across all samples. C, Density plots (left) showing the distribution of Z scores for each RNA modification 
across the three groups, with a corresponding heatmap (right) displaying the statistical significance of the differences. D, The standard deviation of RNA modification abundance 
in each group. The pink dashed line indicates modifications with increased variability between groups, while the grey dashed line indicates decreased variability. E, The relative 
abundance of selected RNA modifications across the three groups. *, P≤0.05; **, P≤0.01, ***, P≤0.001; ns, non-significant differences.  
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Figure 2. Correlation analysis of RNA modifications. A, Correlation matrices displaying pairwise correlations among RNA modifications for Control, PCOS, and POI groups, as 
well as for all samples combined. B, The correlations between selected pairs of RNA modifications. *, P≤0.05; **, P≤0.01, ***, P≤0.001.  
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tion coefficients in control (r=0.800) and POI (r=0.602) samples 
compared with PCOS (r=0.914). Similar shifts were observed 
between Im and m 1A, which displayed negative correlations 
across groups (Figure 2B). In some cases, correlation patterns 
shifted under specific disease conditions. For instance, Am and 
m 7G showed no correlation in controls but were negatively 
correlated in both the PCOS (r=−0.440) and POI (r=−0.650) 
groups. In contrast, Am and m 2,2,7G exhibited a positive 
correlation in PCOS, a relationship that was absent in POI and 
control groups. The correlation between Gm and Cm also showed 
significant variability across the three groups (Figure 2B). 

While previous studies have primarily focused on individual 
RNA modifications as potential mechanisms of disease, our 
results reveal that RNA modifications form intrinsic correlation 
networks, some of which may represent regulatory interactions 
specific to ovarian diseases. 

Predictive power of RNA modification signatures for 
clinical features  

Given the dynamic changes in blood RNA modifications and their 
correlations observed across PCOS, POI, and control groups, we 
investigated whether these RNA modifications were related to 
specific clinical features associated with these ovarian disorders. 
We selected key clinical features for analysis, including FNPO, 
serum testosterone (T), and FSH levels—critical diagnostic 
factors for both PCOS and POI. Additional variables, such as 
AMH and body mass index (BMI), known to correlate with PCOS 
(Álvarez-Blasco et al., 2006; Teede et al., 2019), were also 
incorporated, alongside age and serum levels of P 4, FSH, and LH. 
In the PCOS group, RNA modifications m 2G and m 7G exhibited a 
positive correlation with AMH levels, a proposed diagnostic 
marker for PCOS (Teede et al., 2019), and a negative correlation 
with BMI, a recognized PCOS risk factor. In the POI group, 
modifications Am and I showed a positive association with BMI, 
while Cm and Um demonstrated a strong negative correlation 
with P 4 (Figure 3A). 

These distinct correlation patterns were further observed 
among the different groups. For instance, Gm displayed a mild 
negative correlation with age in the control group, yet a positive 
correlation with age in the PCOS group. Additionally, correla-
tions between m 1A and FNPO, Am and BMI, m 7G and serum T 
levels exhibited unique patterns or significant shifts in correlation 
coefficients across groups (Figure 3B), indicating the sensitivity of 
RNA modifications to clinical feature fluctuations. These findings 
suggest that RNA modifications may hold predictive potential for 
clinical features in ovarian disorders. 

To assess the predictive potential of RNA modifications for 
clinical features of PCOS, we employed six machine learning (ML) 
regression models. RNA modifications were incrementally 
incorporated into the corresponding ML models based on their 
correlation strength with the respective clinical features (Table 
S2). As shown in Figure 3C, the combination of five RNA 
modifications (m 2,2,7G, m 6A, m 2,2G, m 5U, and m 7G) yielded the 
highest predictive performance for serum AMH levels using the 
linear SVM model, with r=0.587 and P=2.21×10 –5. Addition-
ally, Cm alone demonstrated the strongest predictive capability 
for serum E 2 levels, yielding r=0.548 and P=9.74×10 –5 in a 
linear regression model. RNA modification combinations proved 
effective in predicting FNPO and serum T levels with the random 
forest model (Figure 3C and D; Table S3). While RNA 

modifications displayed a predictive capacity for BMI, age, and 
serum LH, FSH, and P 4 levels (Figure S3), these predictions 
showed weaker associations, indicating the specificity of RNA 
modifications in predicting key PCOS-related clinical features. 

Establishing an RNA modification signature to distinguish 
PCOS cases  

Given the ability of RNA modifications to predict clinical features 
related to PCOS, we further investigated whether blood RNA 
modifications could differentiate PCOS cases from POI and 
control subjects (Figure 4A), which could have potential clinical 
applications. We used the 15 RNA modifications from the 
discovery cohort, which included PCOS, POI, and control 
samples, to develop a prediction model. First, we evaluated all 
15 RNA modification features across nine different ML classifica-
tion models in the discovery cohort. The importance of each RNA 
modification for classification was assessed and ranked based on 
the mean decrease in accuracy (MDA) metric. The modifications 
m 7G, m 6A, Gm, m 2,2,7G, m 1A, m 2,2G, Im, and m 5U were 
identified as significant contributors to the model’s predictive 
power (Figure 4B). We then tested the ML models in the 
validation cohort (Figure 4C). We figured out that only two 
modifications—m 6A and m 7G—are sufficient to classify the 
PCOS cases and the light gradient boosting machine model 
(LightGBM) achieved the highest predictive accuracy, with an 
area under the curve (AUC) of 0.9319 (Figure 4C; Table S4). 

We then compared our optimized ML model with current 
clinical diagnostic criteria for PCOS. For clinical diagnosis, we 
applied criteria based on androgen excess (T>48.1 ng dL −1), 
ovulatory dysfunction (menstrual cycle>35 days), and polycystic 
ovaries (FNPO≥12), similar to the Rotterdam Criteria, where a 
diagnosis of PCOS requires meeting any two of these three 
conditions. In differentiating PCOS cases from controls, our 
model using m 6A and m 7G achieved an AUC of 1.0000, 
surpassing the AUC of 0.8462 observed for clinical criteria 
(Figure 4D), indicating superior predictive accuracy for RNA 
modifications in this context. For distinguishing PCOS from POI, 
the RNA modification signature yielded an AUC of 0.8529, 
which was comparable to the clinical criteria’s AUC of 0.8824. 
However, in differentiating PCOS from non-PCOS patients, the 
model showed robust performance with an AUC of 0.9424, as 
compared with the clinical criteria’s AUC of 0.8824. These 
results suggest that our optimized ML model, incorporating m 6A 
and m 7G RNA modifications, offers significant predictive 
accuracy for PCOS detection and may serve as a valuable 
biomarker approach for clinical diagnosis. 

DISCUSSION  

In this study, using high-performance liquid chromatography 
coupled with a mass spectrometry (HPLC-MS) platform, which 
provides both qualitative and quantitative information on 
multiple RNA modifications from a single sample, we identified 
specific RNA modification expression patterns that exhibited 
intrinsic correlations and were associated with different ovarian 
conditions. After determining that these blood RNA modification 
signatures could predict clinical features of PCOS, we further 
identified an efficient RNA modification signature in peripheral 
blood—comprising m 6A and m 7G—that could effectively distin-
guish PCOS cases from POI patients and controls using a random 
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Figure 3. Correlation analysis between RNA modifications and clinical features. A, Correlation matrices displaying the pairwise correlations between 15 RNA modifications and 
various clinical features for Control, PCOS, and POI groups, as well as for all samples combined. B, The correlations between selected RNA modifications and specific clinical 
features. C, Correlations between actual and predicted values of AMH, E 2, T, and FNPO using six ML models, with RNA modifications incrementally ranked by feature importance. 
D, Scatter plots comparing actual and predicted values of AMH, E 2, T, and FNPO in the validation cohort, based on the most predictive RNA modification signatures identified by 
the best-performing ML models. *, P≤0.05; **, P≤0.01, ***, P≤0.001.  
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forest model. These findings suggest the potential for RNA 
modification signatures to serve as non-invasive biomarkers for 
the diagnosis of clinical reproductive diseases. 

PCOS and POI are the most common ovulatory disorders 
affecting fertility, and patients with these conditions often present 
with oligomenorrhea or amenorrhea, necessitating additional 
clinical tests for proper diagnosis. While serum FSH levels are 
commonly used for POI diagnosis (European Society for Human 
et al., 2016), the classification and diagnosis of PCOS remain 
more challenging. RNA chemical modifications, which alter RNA 
expression, splicing, stability, structure, and function (Delaunay 
et al., 2024), have emerged as an additional layer of biological 
information beyond the RNA sequence itself (Zhang et al., 2018). 
Since non-coding RNAs play critical roles in both physiological 
and pathological processes (Esteller, 2011), it is not surprising 
that RNA modifications have been found to change dynamically 

in response to various human diseases (Delaunay et al., 2024; 
Jonkhout et al., 2017; Zhang et al., 2020b). In this study, we 
identified specific blood RNA modification signatures—particu-
larly m 6A and m 7G—that distinguish PCOS cases from POI and 
control subjects, thus enhancing our understanding of RNA 
modifications and their potential role in these disorders. 

The origin of these circulating RNA modifications in PCOS 
raises intriguing questions. Previous studies have shown that 
circulating non-coding RNAs involved in diseases such as 
cardiovascular disease (E et al., 2018), kidney disease (van 
Zonneveld et al., 2023), and cancers (Mugoni et al., 2022; Zen 
and Zhang, 2012), are predominantly secreted or released from 
tissues (Barth et al., 2020). This leads us to hypothesize that the 
observed changes in circulating RNA modifications, especially in 
PCOS, may partly originate from the ovaries. For example, we 
found that blood m 6A levels were significantly reduced in PCOS 

Figure 4. Evaluation of RNA modifications in predicting PCOS. A, Schematic overview illustrating the strategy to identify non-invasive biomarkers for PCOS diagnosis using 
RNA modification profiles from peripheral blood samples. B, Ranked feature importance of RNA modifications in classifying PCOS within the discovery cohort. C, Left: AUC values 
of the top six best-performing ML models, organized according to feature importance of RNA modifications; right: ROC curve comparison of the top six best-performing models 
with RNA modifications m 6A and m 7G. D–F, Comparison of ROC curves of the best-performing model against traditional clinical criteria for identifying PCOS in various 
comparisons: (D) PCOS vs. Control, (E) PCOS vs. POI, and (F) PCOS vs. non-PCOS samples. *, P≤0.05; **, P≤0.01, ***, P≤0.001.  
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patients, which is consistent with previous reports linking m 6A to 
ovarian function and disease regulation. Differential m 6A 
modification of FOXO3 mRNA has been observed in luteinized 
granulosa cells (GCs) of non-obese PCOS patients following 
controlled ovarian hyperstimulation (Zhang et al., 2020a). 
Furthermore, polymorphisms in the m 6A demethylase FTO gene 
have been associated with PCOS susceptibility and hyperandro-
genism (Branavan et al., 2020; Chaudhary et al., 2023; Song et 
al., 2014), suggesting that ovarian m 6A modifications may differ 
in PCOS patients. m 6A and its regulatory enzymes undergo 
dynamic changes during ovarian development (Sun et al., 2020), 
follicle development (Sun et al., 2020; Xia et al., 2018), oocyte 
maturation (Sui et al., 2020; Yao et al., 2023) and ovarian 
cancer (Liu et al., 2020) further supporting their potential 
involvement in ovarian diseases. 

In addition to m 6A, m 7G emerged as a key modification 
distinguishing PCOS cases. m 7G methylation is a common 
modification found in the 5′-cap of mRNAs and in tRNAs, 
catalyzed by different enzymes. Recent research has shown that 
METTL1-mediated m 7G modification in tRNAs plays a role in 
aging regulation (Fu et al., 2024), and METTL1 has also been 
implicated in prognostic models for ovarian cancer classification 
(Zheng et al., 2022). This suggests that METTL1-mediated m 7G 
modification may also influence ovarian function. Our findings 
highlight m 7G as a characteristic modification in PCOS, 
indicating that alterations in m 7G and its associated enzymes, 
such as METTL1, may occur in the ovaries of PCOS patients and 
be detectable in circulating RNA modifications. If confirmed, 
these RNA modifications and their regulators could represent 
novel therapeutic targets for PCOS. 

Our findings suggest that circulating RNA modification 
signatures have the potential to predict key features of PCOS, 
particularly follicle numbers. Quantitative histological studies of 
human ovaries have shown that the total number of follicles 
decreases throughout life, making follicle count an important 
biomarker for assessing ovarian conditions (Faddy and Gosden, 
1995). Currently, ultrasonography is the primary method for 
detecting follicles in clinical practice. However, ultrasound has 
limitations; for example, it can only identify sufficiently large 
follicles, often missing smaller ones. Additionally, variability in 
operator expertise and differences in the quality of ultrasound 
machines can introduce challenges and inconsistencies in 
reporting (Sujata and Swoyam, 2018). Meanwhile, FNPO is also 
a critical reproductive health indicator, routinely assessed not 
only for diagnosing PCOS and POI but also for evaluating overall 
ovarian function. Thus, the lack of simple biological markers 
linked to follicle numbers limits the ability to achieve accurate 
and rapid detection. In our study, we found that blood RNA 
modifications could predict FNPO across all three groups, 
suggesting a novel avenue for improving clinical assessments. 
However, the underlying mechanisms connecting RNA mod-
ifications to follicle numbers remain unclear and warrant further 
investigation. 

Additionally, we observed a strong intrinsic association among 
RNA modifications in peripheral blood across our samples, 
similar to recent findings in mice (Guo et al., 2023) and human 
sperm (Guo et al., 2022). The origins of these correlations remain 
unclear, but they may arise from several factors, including 
shared, sequential, or opposing enzymatic regulation, or the 
presence of RNA species that carry specific modifications. For 
instance, under certain conditions, m 1A can convert to m 6A 

through the Dimroth rearrangement (Macon and Wolfenden, 
1968), suggesting a potential negative correlation between these 
two modifications. Conversely, m 6A reader YTHDF2 can also 
bind to the m 1A reader HRSP12 (Boo et al., 2022), and YTHDF2 
has been shown to interact with m 1A sites as well. This cross-talk 
between m 6A and m 1A regulators, such as YTHDF2 and 
ALKBH3, highlights the possibility of a positive correlation 
between these modifications depending on the context. There-
fore, various regulatory mechanisms may influence the correla-
tion patterns of m 1A and m 6A, which could shift under different 
pathological conditions. In our study, we found that some 
correlation patterns between RNA modifications were altered in 
PCOS and POI groups compared with control subjects, indicating 
that specific regulatory pathways may be affected in these 
diseases. Although the exact mechanisms underlying these 
correlations are not fully understood, the inherent relationships 
among RNA modifications add a layer of complexity and provide 
valuable information that could be harnessed for diagnostic 
purposes. 

Although the RNA modification detection method used in this 
study requires only a small blood volume and offers greater 
accuracy and efficiency compared with traditional PCOS 
analyses, it has certain limitations. The preprocessing steps, 
including blood RNA extraction and enzymatic digestion into 
mononucleotides, are relatively time-consuming and demand 
specialized molecular biology expertise. Moreover, it is well- 
established that white blood cells (WBCs), which constitute 
approximately 1% of blood composition, contribute the majority 
of RNA content in whole blood (Jiang et al., 2013). Therefore, the 
presence of immune abnormalities induced by other diseases may 
alter the proportions of WBCs, potentially affecting RNA 
modification profiles and influencing diagnostic outcomes. 
Additionally, PCOS patients have been reported to exhibit 
increased numbers of total WBCs, lymphocytes, and neutrophils 
(Agapova et al., 2014). Consequently, the observed changes in 
m 6A and m 7G modifications may reflect a combination of ovary- 
derived and immune-related alterations. Thus, further investiga-
tion is needed to refine this method and clarify the specific 
contributions of these changes. 

In recent years, advancements in RNA modification detection 
technologies have uncovered the regulatory roles of RNA 
modifications in human diseases, marking the beginning of our 
understanding of this field. The insights gained from our study 
highlight the relevance of RNA modifications in detecting 
conditions related to pregnancy and highlight their involvement 
in the pathophysiology of disorders such as PCOS. In addition to 
our current omics approach for detecting RNA modifications, 
recently developed methods, such as Nanopore-based direct RNA 
sequencing (Lucas et al., 2024) and, advanced mass spectro-
metry-based method techniques (Yuan et al., 2024), are paving 
the way for single-molecule level detection and precise mapping 
of these modifications. Nanopore sequencing, for example, offers 
the advantage of directly reading RNA modifications, although it 
currently faces challenges related to read accuracy and requires a 
high RNA input. On the other hand, advanced mass spectro-
metry provides high-sensitivity quantification but is limited by 
low throughput, complex data processing, and the need for 
specialized instrumentation (Shi et al., 2022). We anticipate that 
as these technologies evolve, their integration will enhance our 
ability to pinpoint modification sites and unravel their functional 
roles in disease processes. 
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MATERIALS AND METHODS  

Cohort of study  

In this clinical cohort study at the Center for Reproductive 
Medicine, Shandong University, China, we collected a total of 
122 human peripheral blood samples, comprising 67 samples in 
the discovery cohort and 55 in the validation cohort from August 
2019 to September 2019. Informed consent was obtained from 
all individual participants included in the study. According to 
Rotterdam Criteria (Teede et al., 2023), PCOS was diagnosed 
meeting two of the following three criteria: polycystic ovaries; 
clinical and/or biochemical hyperandrogenism; oligo- or anovu-
lation, the menstrual cycle length over 35 days, excluding other 
causes of oligomenorrhea or hyperandrogenism, such as Cush-
ing’s syndrome. POI patients showed oligomenorrhea or 
menopause before 40 years of age, with elevated FSH (> 25 
IU L −1). Women with ovarian surgery, chemo/radiotherapy, or 
known autoimmune disease were excluded. Control participants 
were selected based on their history of regular menstrual cycles 
and absence of PCOS features, such as clinical or biochemical 
hyperandrogenism. 

Ribonucleotides used as LC-MS/MS standards  

2′-O-methylguanosine (Gm), 2′-O-methyluridine (Um), and 
inosine (I) were purchased from Berry & Associates (USA). 1- 
methylguanosine (m 1G), N 2-methylguanosine (m 2G), N 2,2,7- 
trimethylguanosine (m 2,2,7G), N 2,N 2-dimethylguanosine 
(m 2,2G) and 2′-O-methylinosine (Im) were purchased from 
Carbosynth. Cytidine (C), adenosine (A), guanosine (G), uridine 
(U), 2′-O-methylcytidine (Cm), 2′-O-methyladenosine (Am), 5- 
methyladenosine (m 5C),   N 1-methyladenosine (m 1A), 5-methy-
luridine (m 5U) and N 7-methylguanosine (m 7G) were purchased 
from Sigma-Aldrich (USA). N 6-methyladenosine (m 6A) was 
purchased from SelleckChem (USA). 

Data collection  

Peripheral blood was collected from the veins of PCOS cases, POI 
cases, and controls. After adding Trizol LS, the samples were 
stored at −80°C. RNA extraction and a single-blind RNA 
modification detection in a high-throughput LC-MS/MS ap-
proach were performed as previously described (Chen et al., 
2016; Zhang et al., 2022; Zhang et al., 2018), with the amount 
of blood used for each individual corresponding to 0.5 mL. In 
short, purified RNAs were digested into single ribonucleotides 
with 1 U benzonase nuclease (Sigma-Aldrich), 0.05 U phospho-
diesterase I (Sigma-Aldrich) and 0.5 U alkaline phosphatase 
(Sigma-Aldrich) at 37°C for 3 h, and redundant enzymes in the 
digestion mixture were removed by centrifugation with a 
Nanosep 3K device with Omega membrane (Sigma-Aldrich). 
Mass spectrometry analysis was performed on a ThermoFisher 
TSQ Vantage Quadrupole mass spectrometer, which was coupled 
with an Agilent 1200 HPLC system and equipped with an 
electrospray ionization source. The MS system was set to run in 
positive ion mode, utilizing a multiple reaction monitoring 
(MRM) scan model. Data from LC-MS/MS were acquired and 
subsequently processed with the Thermo Xcalibur™ mass 
spectrometry data system for the quantification of modified 
ribonucleotide concentrations. To minimize or eliminate the 

impact of variation in sample loading, the calculated percentages 
of each modified ribonucleotide were standardized against the 
total quantified ribonucleotides that share an identical nucleo-
base. For instance, the percentage of m 5C was computed by 
dividing its molar concentration by the total molar concentration 
of m 5C, Cm, and C. 

Establishment of predictive models for clinical features 
using peripheral blood RNA modifications  

A total of 15 peripheral blood RNA modifications were 
considered to develop the prediction models. The importance of 
each RNA modification was assessed and ranked using the 
correlation of the actual clinical features and predicted clinical 
features that were predicted by each RNA modification. Six 
different ML regression models, including linear regression, linear 
support vector machine (linear SVM), radial basis function 
support vector machine (radial basis function SVM), random 
forest, extreme gradient boosting (XGBoost), and k-nearest 
neighbors (KNN) were utilized to develop the RNA modification 
signature for clinical features prediction. The clinical features 
include age, BMI, T, luteinizing hormone (LH), progesterone (P 4), 
FSH, estradiol (E 2), AMH, and FNPO by using the data from the 
discovery cohort. 

Establishment of predictive models for PCOS classification 
using peripheral blood RNA modifications  

A total of 15 peripheral blood RNA modifications were 
considered to develop the prediction models. The feature 
importance of each RNA modification for PCOS classification 
was ranked using the MDA metric. Nine different ML classifica-
tion models, including logistic regression, naive Bayes, linear 
support vector machine (linear SVM), radial basis function 
support vector machine (radial basis function SVM), decision 
tree, random forest, light gradient boosting machine (LightGBM), 
gradient-boosting xgboost, and k-nearest neighbors (KNN) were 
utilized to develop the RNA modification signature for predicting 
PCOS using data from the discovery cohort.  

Statistical analysis  

All the statistical analyses were conducted using R (version 
4.3.3). The correlation test, t-test, and Wilcoxon test were 
performed using the “cor.test”, “t.test”, and “wilcox.test” 
functions, respectively. The PCA was performed using the 
“FactoMineR” and “factoextra” packages. The permutation test 
for feature importance evaluation was performed using the 
“rfPermute” package. A Kolmogorov-Smirnov (KS) test was 
applied to assess differences in RNA modification distribution. 
The ML models were established using the “caret”, “tidymo-
dels”, “neuralnet”, and “keras” packages. The predictive power 
of the models was evaluated by ROC curves with the “multi-
pleROC” package. Hierarchical clustering was performed using 
the “complete” method with “Euclidean” distance using the 
“ComplexHeatmap” package. The correlation analyses between 
actual and predicted clinical features were conducted using 
Pearson’s correlation test to determine the correlation coeffi-
cient (r). Statistical significance was set at a two-tailed P 
value≤0.05. 
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